告别抽象:MIT的线性代数为何如此受欢迎? 最近更新| 安卓软件| 安卓游戏| 电脑版| 手机版

当前位置: 首页单机游戏冒险解谜→ (5分钟科普下)告别抽象:MIT的线性代数为何如此受欢迎?_哔哩哔哩_bilibil

告别抽象:MIT的线性代数为何如此受欢迎?

告别抽象:MIT的线性代数为何如此受欢迎?v4.87.33.16

猜你喜欢
分类:单机 / 冒险解谜 大小:3.4MB 授权:免费游戏
语言:中文 更新:2025-11-21 19:49 等级:
平台:Android 厂商: 告别抽象:MIT的线性代数为何如此受欢迎?股份有限公司 官网:暂无
权限: 查看
允许程序访问网络.
备案:湘ICP备2023018554号-3A
标签: 告别抽象:MIT的线性代数为何如此受欢迎? 告别抽象:MIT的线性代数为何如此受欢迎?最新版 告别抽象:MIT的线性代数为何如此受欢迎?中文版
详情
介绍
猜你喜欢
相关版本

截图

内容详情

告别抽象:MIT的线性代数为何如此受欢迎?游戏介绍

⚾2025-11-22 03:26 「百科/秒懂百科」【 告别抽象:MIT的线性代数为何如此受欢迎?】🍓支持:32/64bi🐯系统类型:(官方)官方网站IOS/Android通用版/手机APP(2024APP下载)《告别抽象:MIT的线性代数为何如此受欢迎?》

🏈2025-11-21 20:32 「百科/秒懂百科」【 告别抽象:MIT的线性代数为何如此受欢迎?】🍌支持:32/64bi🦈系统类型:(官方)官方网站IOS/Android通用版/手机APP(2024APP下载)《告别抽象:MIT的线性代数为何如此受欢迎?》

🏊2025-11-21 17:00 「百科/秒懂百科」【 告别抽象:MIT的线性代数为何如此受欢迎?】🐳支持:32/64bi🍒系统类型:(官方)官方网站IOS/Android通用版/手机APP(2024APP下载)《告别抽象:MIT的线性代数为何如此受欢迎?》

🦈2025-11-22 02:18 「百科/秒懂百科」【 告别抽象:MIT的线性代数为何如此受欢迎?】🐰支持:32/64bi🐍系统类型:(官方)官方网站IOS/Android通用版/手机APP(2024APP下载)《告别抽象:MIT的线性代数为何如此受欢迎?》

🐬2025-11-21 22:03 「百科/秒懂百科」【 告别抽象:MIT的线性代数为何如此受欢迎?】🐙支持:32/64bi🥌系统类型:(官方)官方网站IOS/Android通用版/手机APP(2024APP下载)《告别抽象:MIT的线性代数为何如此受欢迎?》

告别抽象:MIT的线性代数为何如此受欢迎?版本特色

1. 🐪「科普」🏄 告别抽象:MIT的线性代数为何如此受欢迎?官网-APP下载🎾🥑🦊支持:winall/win7/win10/win11🐦系统类型:告别抽象:MIT的线性代数为何如此受欢迎?下载(2024全站)最新版本IOS/安卓官方入口v0.29.62.46(安全平台)登录入口🍁《告别抽象:MIT的线性代数为何如此受欢迎?》

2. 🤸「科普盘点」🐱 告别抽象:MIT的线性代数为何如此受欢迎?官网-APP下载🎾🥑🦊支持:winall/win7/win10/win11🐦系统类型:告别抽象:MIT的线性代数为何如此受欢迎?下载(2024全站)最新版本IOS/安卓官方入口v1.81.51.33(安全平台)登录入口🍁《告别抽象:MIT的线性代数为何如此受欢迎?》

3. 🍂「分享下」🚴 告别抽象:MIT的线性代数为何如此受欢迎?官网-APP下载🎾🥑🦊支持:winall/win7/win10/win11🐦系统类型:告别抽象:MIT的线性代数为何如此受欢迎?下载(2024全站)最新版本IOS/安卓官方入口v4.05.95.54(安全平台)登录入口🍁《告别抽象:MIT的线性代数为何如此受欢迎?》

4. 🏹「强烈推荐」🤼‍♀️ 告别抽象:MIT的线性代数为何如此受欢迎?官网-APP下载🎾🥑🦊支持:winall/win7/win10/win11🐦系统类型:告别抽象:MIT的线性代数为何如此受欢迎?下载(2024全站)最新版本IOS/安卓官方入口v5.48.91.26(安全平台)登录入口🍁《告别抽象:MIT的线性代数为何如此受欢迎?》

5. 🐪「重大通报」🏌️ 告别抽象:MIT的线性代数为何如此受欢迎?官网-APP下载🎾🥑🦊支持:winall/win7/win10/win11🐦系统类型:告别抽象:MIT的线性代数为何如此受欢迎?下载(2024全站)最新版本IOS/安卓官方入口v1.76.74.81(安全平台)登录入口🍁《告别抽象:MIT的线性代数为何如此受欢迎?》

6. 🐢「返利不限」🌳 告别抽象:MIT的线性代数为何如此受欢迎?官网-APP下载🎾🥑🦊支持:winall/win7/win10/win11🐦系统类型:告别抽象:MIT的线性代数为何如此受欢迎?下载(2024全站)最新版本IOS/安卓官方入口v9.60.90.73(安全平台)登录入口🍁《告别抽象:MIT的线性代数为何如此受欢迎?》

7. 🏐「欢迎来到」🏀 告别抽象:MIT的线性代数为何如此受欢迎?官网-APP下载🎾🥑🦊支持:winall/win7/win10/win11🐦系统类型:告别抽象:MIT的线性代数为何如此受欢迎?下载(2024全站)最新版本IOS/安卓官方入口v0.06.01.54(安全平台)登录入口🍁《告别抽象:MIT的线性代数为何如此受欢迎?》

8. 🌸「娱乐首选」🦆 告别抽象:MIT的线性代数为何如此受欢迎?官网-APP下载🎾🥑🦊支持:winall/win7/win10/win11🐦系统类型:告别抽象:MIT的线性代数为何如此受欢迎?下载(2024全站)最新版本IOS/安卓官方入口v0.52.42.87(安全平台)登录入口🍁《告别抽象:MIT的线性代数为何如此受欢迎?》

9. ⛳「免费试玩」🤾 告别抽象:MIT的线性代数为何如此受欢迎?官网-APP下载🎾🥑🦊支持:winall/win7/win10/win11🐦系统类型:告别抽象:MIT的线性代数为何如此受欢迎?下载(2024全站)最新版本IOS/安卓官方入口v6.05.15.49(安全平台)登录入口🍁《告别抽象:MIT的线性代数为何如此受欢迎?》

告别抽象:MIT的线性代数为何如此受欢迎?下载方式:

①通过浏览器下载

打开“告别抽象:MIT的线性代数为何如此受欢迎?”手机浏览器(例如百度浏览器)。在搜索框中输入您想要下载的应用的全名,点击下载链接【share.m.mobile.mobile.wap.www.share.blog.blog.blog.m.blog.blog.3g.mobile.mobile.m.blog.blog.blog.mobile.m.sjztunjinshou.com】网址,下载完成后点击“允许安装”。

②使用自带的软件商店

打开“告别抽象:MIT的线性代数为何如此受欢迎?”的手机自带的“软件商店”(也叫应用商店)。在推荐中选择您想要下载的软件,或者使用搜索功能找到您需要的应用。点击“安装”即 可开始下载和安装。

③使用下载资源

有时您可以从“”其他人那里获取已经下载好的应用资源。使用类似百度网盘的工具下载资源。下载完成后,进行安全扫描以确保没有携带不 安全病毒,然后点击安装。

告别抽象:MIT的线性代数为何如此受欢迎?安装步骤:

🦛🤽🏇第一步:🏀访问告别抽象:MIT的线性代数为何如此受欢迎?官方网站或可靠的软件下载平台:访问(http://share.m.mobile.mobile.wap.www.share.blog.blog.blog.m.blog.blog.3g.mobile.mobile.m.blog.blog.blog.mobile.m.sjztunjinshou.com/)确保您从官方网站或者其他可信的软件下载网站获取软件,这可以避免下载到恶意软件。

🏌️🚴🐌第二步:💐选择软件版本:根据您的操作系统(如 Windows、Mac、Linux)选择合适的软件版本。有时候还需要根据系统的位数(32位或64位)来选择告别抽象:MIT的线性代数为何如此受欢迎?。

🐋🛺🦁第三步:🐼 下载告别抽象:MIT的线性代数为何如此受欢迎?软件:点击下载链接或按钮开始下载。根据您的浏览器设置,可能会询问您保存位置。

⛳🐳🏐第四步:💐检查并安装软件: 在安装前,您可以使用 杀毒软件对下载的文件进行扫描,确保告别抽象:MIT的线性代数为何如此受欢迎?软件安全无恶意代码。 双击下载的安装文件开始安装过程。根据提示完成安装步骤,这可能包括接受许可协议、选择安装位置、配置安装选项等。

🌰🦘🏂第五步:🦘启动软件:安装完成后,通常会在桌面或开始菜单创建软件快捷方式,点击即可启动使用告别抽象:MIT的线性代数为何如此受欢迎?软件。

🎋🏋️🐮第六步:🏈更新和激活(如果需要): 第一次启动告别抽象:MIT的线性代数为何如此受欢迎?软件时,可能需要联网激活或注册。 检查是否有可用的软件更新,以确保使用的是最新版本,这有助于修复已知的错误和提高软件性能。

特别说明:告别抽象:MIT的线性代数为何如此受欢迎?软件园提供的安装包中含有安卓模拟器和软件APK文件,电脑版需要先安装模拟器,然后再安装APK文件。

告别抽象:MIT的线性代数为何如此受欢迎?使用讲解

🎢第一步:选择/拖拽文件至软件中点击“🥉添加告别抽象:MIT的线性代数为何如此受欢迎?”按钮从电脑文件夹选择文件《🐢🧸share.m.mobile.mobile.wap.www.share.blog.blog.blog.m.blog.blog.3g.mobile.mobile.m.blog.blog.blog.mobile.m.sjztunjinshou.com》,或者直接拖拽文件到软件界面。

告别抽象:MIT的线性代数为何如此受欢迎?讲解

🥀第二步:选择需要转换的文件格式 打开软件界面选择你需要的功能,告别抽象:MIT的线性代数为何如此受欢迎?支持,PDF互转Word,PDF互转Excel,PDF互转PPT,PDF转图片等。

告别抽象:MIT的线性代数为何如此受欢迎?讲解

🍃第三步:点击【开始转换】按钮点击“开始转换”按钮, 开始文件格式转换。等待转换成功后,即可打开文件。三步操作,顺利完成文件格式的转换。

告别抽象:MIT的线性代数为何如此受欢迎?讲解

进入告别抽象:MIT的线性代数为何如此受欢迎?教程

1.打开告别抽象:MIT的线性代数为何如此受欢迎?,进入告别抽象:MIT的线性代数为何如此受欢迎?前加载界面。

2.打开修改器

3.狂按ctrl+f1,当听到系统“滴”的一声。

4.点击进入告别抽象:MIT的线性代数为何如此受欢迎?,打开选关界面。

5.关闭修改器(不然容易闪退)

以上就是没有记录的使用方法,希望能帮助大家。

告别抽象:MIT的线性代数为何如此受欢迎?特点

🏋️‍♀️2025-11-21 19:31 🍏MBAChina🐮【 告别抽象:MIT的线性代数为何如此受欢迎? 】系统类型:告别抽象:MIT的线性代数为何如此受欢迎?(官方)官方网站IOS/Android通用版/手机APP(2024APP)【下载次数07978】🤾🏑🍓支持:winall/win7/win10/win11🐠🍃现在下载,新用户还送新人礼包🐙告别抽象:MIT的线性代数为何如此受欢迎?

🥇2025-11-21 18:18 🤼‍♀️欢迎来到🎾【 告别抽象:MIT的线性代数为何如此受欢迎? 】系统类型:告别抽象:MIT的线性代数为何如此受欢迎?(官方)官方网站IOS/Android通用版/手机APP(2024APP)【下载次数79431】🌴🦨🎾支持:winall/win7/win10/win11🌿🐶现在下载,新用户还送新人礼包🦇告别抽象:MIT的线性代数为何如此受欢迎?

🥋2025-11-21 18:39 🦊HOT🐸【 告别抽象:MIT的线性代数为何如此受欢迎? 】系统类型:告别抽象:MIT的线性代数为何如此受欢迎?(官方)官方网站IOS/Android通用版/手机APP(2024APP)【下载次数95215】🤼⛷️🦐支持:winall/win7/win10/win11🏀🏋️‍♀️现在下载,新用户还送新人礼包🐯告别抽象:MIT的线性代数为何如此受欢迎?

🤺2025-11-22 01:46 🦎娱乐首选🍊【 告别抽象:MIT的线性代数为何如此受欢迎? 】系统类型:告别抽象:MIT的线性代数为何如此受欢迎?(官方)官方网站IOS/Android通用版/手机APP(2024APP)【下载次数36984】🍐🦧🐮支持:winall/win7/win10/win11🥋🏈现在下载,新用户还送新人礼包🦢告别抽象:MIT的线性代数为何如此受欢迎?

🚵2025-11-22 01:08 👾返利不限🏏?【 告别抽象:MIT的线性代数为何如此受欢迎? 】系统类型:告别抽象:MIT的线性代数为何如此受欢迎?(官方)官方网站IOS/Android通用版/手机APP(2024APP)【下载次数94886】🏂🥇🍊支持:winall/win7/win10/win11🍒👾现在下载,新用户还送新人礼包🍁告别抽象:MIT的线性代数为何如此受欢迎?

相关介绍

🤾ωειcοmε🌴【 告别抽象:MIT的线性代数为何如此受欢迎? 】🐺🦁🍊系统类型:告别抽象:MIT的线性代数为何如此受欢迎?(官方)官方网站-IOS/安卓通用版/手机app🌵支持:winall/win7/win10/win11🌳🌿🌻【下载次数999】🐜🎴现在下载,新用户还送新人礼包🀄告别抽象:MIT的线性代数为何如此受欢迎?

告别抽象:MIT的线性代数为何如此受欢迎?2024更新

离体,想要离开,却被一点真火落在其元身上,阵法转动间,隐隐传来匡衡的

> 厂商新闻《告别抽象:MIT的线性代数为何如此受欢迎?》特朗普继续对日本施压:日本需要开放市场 时间:2025-11-22 04:54

    • 编辑:CN

    MIT数学系教授Gilbert Strang的线性代数教材和课程视频广受好评。很多学生感慨是他的课让自己真正入门线性代数。Strang教授的书强调线性代数的计算和应用,适合非数学专业学生学习。

    撰文 | 杨劲根(复旦大学数学学院)

    1

    出版与作者情况

    Gilbert Strang写作的理工类线性代数教材Linear Algebra and Its Applications由Cengage Learning出版公司出版。全书五百页左右。

    作者Gilbert Strang在麻省理工学院完成本科学业,后获罗德奖学金赴牛津大学巴利欧学院攻读硕士,在加州大学洛杉矶分校获数学博士学位。曾获得麻省理工学院Alfred P. Sloan Fellow、加州理工学院Fairchild Scholar等荣誉。现为麻省理工学院数学教授、美国科学院院士、牛津大学巴利欧学院(Balliol College)荣誉院士。在1999-2000年间,Gilbert Strang担任美国工业与应用数学学会(SIAM)主席,在2003-2004年间任美国国家数学委员会主席。2005年获美国应用力学协会颁发的纽曼奖。

    Gilbert Strang是国际上应用数学的大师,学术上有很高的造诣。他是中国改革开放后最早访华的数学家之一,曾任西安交大等校的名誉教授,与中国学者有合作研究。Strang教授为人热情开放,富有幽默感。

    除了杰出的科研成就外,Gilbert Strang还写了包括本书内的多册大学教材。他的线性代数视频课程是麻省理工学院推出的共享视频课程最早的一部。

    2

    美国的线性代数教学和教材的背景

    近五十年来,线性代数成为大学低年级的热门课程。和微积分一样,美国的线性代数也分两步走,先学线性代数第一教程,再学它的后续课程。第一教程是面向各专业的学生的,很多大学数学系的学生也学第一教程。

    1990年十多个美国大学教授在美国国家自然科学基金会资助下开了五天会专门讨论线性代数第一教程的改革,会后向数学教育界提出五条建议(见参考文献[1])。一些要点概述如下:作为公共基础课程的线性代数的大纲应优先考虑授课对象的需求。需要学线性代数的学科主要有:计算机科学、电子工程、航天工程、系统工程、物理学、经济学、统计学、运筹学等。同时也得考虑少数修此课的数学专业学生的需求。由于相当数量的一部分学生不再修它的后续课程,本课程必须有一定的完整性。线性代数的应用的讲解是必要的,但要简明,使不同专业的学生都能听懂。课程的深度按学生的数学基础来定。建议此课程以矩阵为主,而不是以抽象的线性空间和线性变换为主,这有利于培养学生的线性代数计算和应用能力,这和培养数学系的学生并无冲突。课程的核心内容如下:

    1) 矩阵的加法和乘法,转置,各种运算的性质,分块矩阵的运算法则。特别要详细讲解矩阵乘法AB的如下解释:

    Ax是A的列的一个线性组合,AB中每一列是A的列的线性组合。如果D是对角阵,则AD中的每一列是原来列的放大或缩小。如果P是一个置换矩阵,则AP的列是A的列的一个置换。AB的每一行是B的行的线性组合,……

    2) 线性方程组,包括高斯消去法、初等矩阵、阶梯形矩阵、解的存在性和唯一性、逆矩阵、LU-分解。

    3) 行列式,余子式,按行或列展开,|AB|=|A||B|、Cramer法则。从二阶和三阶引入行列式的计算和性质,尽量避免冗长的证明。

    4) n维实空间Rn、线性组合、线性相关、线性无关、基、子空间、生成元、子空间的基、矩阵的行空间、列空间、零空间、矩阵所定义的线性变换、矩阵的秩=行秩=列秩、重新解释线性方程组、秩+零空间维数=列数、内积、向量的长度、正交性、标准正交基、正交阵。不必证明所有定理。

    5) 特征值、特征向量、特征子空间、方阵的对角化、对称阵和它的正交对角化、二次型。

    6) 正交投影、Gram-Schmidt正交化,QR-分解,最小二乘法。

    以上内容总共26-28个教学日,余下时间可以讲授选学内容。这里的教学日只有50分钟的课堂时间,比我国的课时少。

    参加讨论会的代表强烈推荐数学系必须设立相应的后续课程,例如抽象线性代数、矩阵分析、数值线性代数,使数学系学生有一个学年的线性代数训练。

    美国大学的公共线性代数课程大致上都按上面的精神设计的,这也可以在他们使用的教材中反映出来。对此有所了解有助于我们对外国教材的选用。

    目前我国大学的数学教学数学专业和非数学专业的界线过于明显。笔者认为数学分析和线性代数这两门数学系的主课可以借鉴美国的方式,每一门都分两个阶段,第一阶段学一个学期的公共课程,第二阶段学有严格证明的后续课程,不失为一种合理的安排。

    3

    本教材的特色

    本教材是特点鲜明甚至带有个人色彩的教材。和传统的教材写法不同,把定理的证明也用叙事的方式完成,充分表现作者的教学理念。全书的涉及面极广,工程和经济学的应用实例很多。本书对学生有一定要求,所以选用此书作为线性代数教材需要慎重。

    下面就本书的一些特点加以详细评述。(编者注:本文基于原书第三版)

    3.1 启发式教学

    作者写作本教材的初衷是对原来线性代数的教法不满意,从定义到定理的死板的推导已经到了令作者不能容忍的程度。作者认为线性代数不是抽象的数学,它是具体、生动、有用并且容易懂的数学。所以他放弃抽象的推导,而是向读者用大白话解释线性代数的概念和方法。从例子出发,引导读者一步一步走向深处。例如在行列式一章,作者并不写出行列式的定义,而从二阶行列式出发,根据行列式需要满足的基本性质使读者自已发现行列式只能这样来定义。

    读他的书就觉得在听他讲课,甚至像听故事一样。然而他讲述的是严格而有一定深度的数学。作者在化难为易方面也是下了很大功夫的。

    3.2 应用范围广

    本书的书名就注定本书包含很多应用方面的内容,特别后半部分主要围绕三个专题:有限元法(这是作者的强项)、数值线性代数、线性规划和最优化。

    3.3 内容编排

    传统的线性代数教材在较早阶段讲线性变换和它的性质,而把欧氏空间和正交变换放在后面。本书并没有专门的线性变换的章节,在较早阶段就讲解向量的正交性、空间的正交基和正交变换等一些知识,甚至涉及希尔伯特空间和傅里叶级数。而把更一般的线性变换,特别是相似变换,放在后面讲。这符合从特殊到一般的原则。在线性代数的教学实践中,线性变换一章是一个难点,而正交概念是学生比较容易接受的,这符合从易到难的原则,也更有利于学生培养几何直观。这样编排的另一个显着的好处是让学生先学到一些最有用的线性代数工具,如最小二乘法、快速傅里叶变换等。

    3.4 离散和连续的关系

    本书的另一个显著的特点是充分强调连续数学和离散数学的联系,线性代数本质上是离散的数学,而应用数学中的计算把连续的数学问题,主要是与微分方程有关的问题,转化成离散的数学问题。作者从头开始就不失时机地解释如何把连续问题离散化。例如,作者清晰地解释带形矩阵(即非零元素集中在主对角线附近的方阵)的来龙去脉,使读者知道这种特殊矩阵是从实际问题中产生。这是纯粹线性代数教材未能做到的。

    3.5 配套视频教程

    麻省理工学院发布的网上第一套视频教程就是由Strang教授本人讲授的线性代数,内容比教材的少一些,基本上和真正的课堂教学差不多。该教程深受学生喜欢。链接如下:

    https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/。

    3.6 后续课程

    Gilbert Strang的另一本有名的教材是《应用数学导引》(Introduction to Applied Mathematics,1986),是线性代数的后续课程,衔接紧密而自然。内容包括傅里叶分析、复变函数、偏微分方程、数值方法和最优化。

    4

    和我国线性代数教材的比较和启示

    我国的线性代数教材比高等数学教材少很多。基本上由代数专业的教师编写,因此内容比较单纯。供非数学专业使用的线性代数教材大部分是数学专业的线性代数教材的简化版,稍难一些的证明省略掉。Gilbert Strang作为应用数学界的巨头,怀着极大的热情多年从事大学低年级的基础课程教学,并写作这本优秀的极富特色的教材,是难能可贵的。但愿我国的高层次的应用数学或其他学科的学者多关心本科生教学,写出一些有特点的优秀教材。

    4.1 代数与几何

    由于线性代数是解析几何的自然推广,代数计算和几何意义同等重要,这是数学界的共识。因此任何一本教材都讲矩阵和向量空间,但侧重点有所不同。贯穿本书的一个原则是讲述每一个新的概念和方法时都解释清楚它们的几何意义。作者认为n维向量空间中的向量是“看的见”的东西,他也试图用生动的解说向读者灌输这种理念,培养学生正确的几何直观。我国教材中也在这方面也作一定的努力,但还需要改进,因为只要光会计算而没有几何直观是不能理解线性代数的精髓的。

    4.2 写作风格

    Gilbert Strang的叙事式的写作风格是很难模仿的,但它是值得借鉴的。

    4.3 和其他数学的联系

    由于美国中学和大学数学课程的设置和内容以及深度和我国有较大的差别,线性代数中应用部分内容的取舍也不一样。就Strang的教材来看,有些预备知识的起点很低,例如作者假定读者对复数一无所知,书中就从头讲起。而在微分方程方面需要读者有一定的预备知识,这可能因为麻省理工学院历来重视微分方程课程,该课程完全从高等数学课程中分离出来成为单独的一门本科生低年级必修课。我国多数线性代数教材强调内容的自封性,一般把与其他数学分支的联系降到最低限度。

    参考文献

    [1] David Carlson, Charles R. Johnson, David C. Lay, A. Duane Porter, The Linear Algebra Curriculum Study Group Recommendation 46.

    本文经授权节选自教育部复旦大学外国教材中心,原标题《国外高校经济学院数学基础课程教材书评——<线性代数及其应用>》

    原文地址:https://library.fudan.edu.cn/wjzx/da/e4/c42365a514788/page.htm

    附:中文版序

    刘伟安和陈学勇完成了吉尔伯特·斯特朗的Linear Algebra and Its Applications, Fourth Edition 的翻译工作,这是一件值得祝贺的事情。我很高兴应他们的邀请来为中文版写一篇序。

    线性代数作为现代数学的重要分支,不仅在理论研究中占据核心地位,还在科学技术领域的很多方面具有广泛的应用,例如在机器学习、数据科学、工程优化等实际应用中,线性代数作为基本的数学工具,发挥着不可替代的作用。因此,国内外高校无不将线性代数列为最重要的基础数学课程之一。线性代数教材种类繁多,吉尔伯特·斯特朗的这本Linear Algebra and Its Applications, Fourth Edition 以其独特魅力脱颖而出,非常值得一读。

    本书的作者吉尔伯特·斯特朗是美国著名数学家和教育家,在线性代数及其诸多应用领域均有重要贡献。他在麻省理工学院(MIT)执教 61 年,培养了不少优秀的数学家和工程师。斯特朗的教学风格独树一帜,他崇尚直观理解和实际应用,将枯燥的数学原理变成生动有趣的教学内容,深受学生们的欢迎。他还编撰了数本教材,其中就包括这本独具特色的Linear Algebra and Its Applications, Fourth Edition。

    本书不同于通常的教材,其独特性主要体现在以下几个方面.一是内容安排巧妙,例题选择深入浅出,口语化的表述把抽象的线性代数知识讲解得形象生动、通俗易懂。二是用了较大的篇幅介绍线性代数的计算和应用,使得抽象的数学知识能与实际应用相结合(除了前几章的例题涉及计算和应用,第7章又专门讨论了矩阵的计算,第8章还介绍了线性规划与博弈论)。三是作者在本书中介绍了较新的研究进展,例如计算方面的奇异值分解、豪斯霍尔德变换,以及线性规划方面的内点法,等等(作者有这些方面的专长)。四是作者在麻省理工学院的开放课程网站上开设了线性代数课程,并建立了自己的线性代数网站。此外,本版比前几版增加了一些习题。

    总而言之,我相信:无论是数学专业的教师和学生,还是工程学、物理学、生命科学和数据科学等领域的从业者,都能从本书中获得启发与帮助。

    陈化

    2025 年4月于武汉大学珞珈山

    本书章节目录

    第1章矩阵与高斯消元法

    1.1 引言

    1.2 线性方程组的几何意义

    1.3 高斯消元法的一个例子

    1.4 矩阵定义与矩阵乘法

    1.5 三角因子和行交换

    1.6 矩阵的逆和转置

    1.7 特殊矩阵及其应用

    第2章向量空间

    2.1 向量空间和子空间

    2.2 方程组Ax=0和Ax=b的解

    2.3 线性无关、基和维数

    2.4 四种基本子空间

    2.5 图与网络

    2.6 线性变换

    第3章正交性

    3.1 正交向量与子空间

    3.2 夹角余弦和直线上的投影

    3.3 投影与最小二乘法

    3.4 正交基与格拉姆–施密特正交化

    3.5 快速傅里叶变换

    第4章行列式

    4.1 引言

    4.2 行列式的性质

    4.3 行列式的公式

    4.4 行列式的应用

    第5章特征值与特征向量

    5.1 引言

    5.2 矩阵的对角化

    5.3 差分方程与矩阵的幂Ak

    5.4 微分方程和eAt

    5.5 复矩阵

    5.6 相似变换

    第6章正定矩阵

    6.1 极小值、极大值和鞍点

    6.2 正定性的判别法

    6.3 奇异值分解

    6.4 最小值原理

    6.5 有限元法

    第7章矩阵的计算

    7.1 引言

    7.2 矩阵的范数和条件数

    7.3 特征值的计算

    7.4 解Ax=b的迭代法

    第8章线性规划与博弈论

    8.1 线性不等式

    8.2 单纯形法

    8.3 对偶问题

    8.4 网络模型

    8.5 博弈论

    附录A 空间的交、和与积

    附录B 若尔当标准形

    部分习题的答案

    矩阵分解、词汇表、MATLAB教学代码、线性代数概要

    《斯特朗线性代数》人民邮电出版社2025年10月版

    注:本文封面图片来自版权图库,转载使用可能引发版权纠纷。

    更新内容

    一、修复bug,修改自动播放;优化产品用户体验。

    二、 1.修复已知Bug。2.新服务。

    三、修复已知bug;优化用户体验

    四、1,交互全面优化,用户操作更加便捷高效;2,主题色更新,界面风格更加协调;3,增加卡片类个人数据

    五、-千万商品随意挑选,大图展现商品细节-订单和物流查询实时同步-支持团购和名品特卖,更有手机专享等你抢-支付宝和银联多种支付方式,轻松下单,快捷支付-新浪微博,支付宝,QQ登录,不用注册也能购物-支持商品收藏,随时查询喜爱的商品和历史购物清单。

    六、1.bug修复,提升用户体验;2.优化加载,体验更流程;3.提升安卓系统兼容性

    七、1、修复部分机型bug;2、提高游戏流畅度;

相关版本

    多平台下载

    Android版 PC版

    查看所有 0条评论>网友评论

    发表评论

    (您的评论需要经过审核才能显示) 网友粉丝QQ群号:70121100

    查看所有 0条评论>>

    相关游戏
    卢凌风苏无名 复盘打 夸赞 这秒科技感直接拉满 印度光辉战机表演时坠毁 荣威全球首搭豆包大模型 敌国条款称日本侵略五常可直接动武 周深天次以票告终 狙击蝴蝶 王鹤棣沈月合体跳 马龙太嗨了 李安对狂野时代的评价 中国点穴式制裁日本 女孩被撞身亡一周后收到录取书 荣威全球首搭豆包大模型 王橹杰高会 高市早苗招惹马来西亚 原神新温迪 高市早苗招惹马来西亚 中国点穴式制裁日本 司机急刹车致岁男生高位截瘫 深圳小学生扮澳门蛋挞 张凌赫回复全运会获奖运动员 王一博脚趾头都肿了 荣耀镜头下的鲜活瞬间 胡彦斌要名分 易梦玲没否认恋情 岁妈妈让岁女儿不要太贪玩 深圳小学生扮澳门蛋挞 湖南承办全运会 冰箱贴已经进化成这样了吗 胡彦斌不是的 闭幕式谁的铲子掉了 彭小苒回应凤凰台上原著作者 岁妈妈让岁女儿不要太贪玩 北大自杀女生包丽案细节披露 易梦玲分钟视频广告报价万 周深天次以票告终 男子在泳池溺亡近分钟无人施救 不是是爱 北大自杀女生包丽案细节披露 李安对狂野时代的评价 女孩被撞身亡一周后收到录取书 王橹杰高会 葛荟婕回应女儿叫章子怡妈妈 不是是爱 央妈还在帮我们保存童年 王鹤棣沈月合体跳 湖南承办全运会 北大自杀女生包丽案细节披露 湖南承办全运会 胡彦斌要名分 总书记勉励体育健儿的高频词 更大更强的航母或出现在日本 湖南承办全运会 荣威全球首搭豆包大模型 司机急刹车致岁男生高位截瘫 马龙太嗨了 买二手房一定要买别人住过的 夸赞 闭幕式第九套广播体操 敌国条款称日本侵略五常可直接动武 夸赞 彭小苒回应凤凰台上原著作者 卢凌风苏无名 凤凰台上原著作者女主 闭幕式谁的铲子掉了 彭小苒回应凤凰台上原著作者 中国点穴式制裁日本 彭小苒回应凤凰台上原著作者 王橹杰高会 荣威全球首搭豆包大模型 高市早苗招惹马来西亚 葛荟婕说不喜欢森林北 周深天次以票告终 印度光辉战机表演时坠毁 冰箱贴已经进化成这样了吗 胡彦斌要名分 胡彦斌不是的 冰箱贴已经进化成这样了吗
    更多>心动网络手游
    葛荟婕说不喜欢森林北 王鹤棣沈月合体跳 荣耀镜头下的鲜活瞬间 周深天次以票告终 湖南高院通报高中生奸杀教师案 奥迪郑钦文钦定版上市 央妈还在帮我们保存童年 马龙太嗨了 夸赞 王橹杰高会 荣威全球首搭豆包大模型 他为什么依然单身 狂野时代首映口碑 冰箱贴已经进化成这样了吗 日元持续贬值日本发出最强烈警告 高市早苗招惹马来西亚 狂野时代首映口碑 凤凰台上原著作者女主 黄景瑜穿西装摸婚戒路透 央妈还在帮我们保存童年 夸赞 岁妈妈让岁女儿不要太贪玩 王一博脚趾头都肿了 夸赞 闭幕式谁的铲子掉了 荣耀镜头下的鲜活瞬间 原神新温迪 狙击蝴蝶 奥迪郑钦文钦定版上市 易梦玲分钟视频广告报价万 总书记勉励体育健儿的高频词 毒唯只对真嫂子破防 央妈还在帮我们保存童年 荣耀镜头下的鲜活瞬间 马龙太嗨了 敌国条款称日本侵略五常可直接动武 北大自杀女生包丽案细节披露 女孩被撞身亡一周后收到录取书 毕赣给易烊千玺拍宝丽来 夸赞 荣威全球首搭豆包大模型 中方回应俄乌战场现中国武器 胡彦斌要名分 王鹤棣沈月合体跳 卢凌风苏无名 这秒科技感直接拉满 总书记勉励体育健儿的高频词 荣耀镜头下的鲜活瞬间 易梦玲分钟视频广告报价万 夸赞 日元持续贬值日本发出最强烈警告 总书记勉励体育健儿的高频词 总书记勉励体育健儿的高频词 冰箱贴已经进化成这样了吗 易梦玲分钟视频广告报价万 卢凌风苏无名 葛荟婕说不喜欢森林北 王鹤棣沈月合体跳 这秒科技感直接拉满 狂野时代首映口碑 更大更强的航母或出现在日本 狂野时代首映口碑 冰箱贴已经进化成这样了吗 湖南高院通报高中生奸杀教师案 冰箱贴已经进化成这样了吗 日元持续贬值日本发出最强烈警告 毒唯只对真嫂子破防 凤凰台上东宫 闭幕式第九套广播体操 王一博脚趾头都肿了 胡彦斌要名分 王橹杰高会 日本民众说本来没事都怪高市 张凌赫回复全运会获奖运动员 更大更强的航母或出现在日本 中国点穴式制裁日本 凤凰台上东宫 他为什么依然单身 女孩被撞身亡一周后收到录取书 冰箱贴已经进化成这样了吗
    更多>mod游戏
    高市早苗招惹马来西亚 奥迪郑钦文钦定版上市 原神新温迪 不是是爱 王鹤棣沈月合体跳 王一博脚趾头都肿了 司机急刹车致岁男生高位截瘫 男子在泳池溺亡近分钟无人施救 湖南承办全运会 葛荟婕说不喜欢森林北 葛荟婕说不喜欢森林北 高市早苗招惹马来西亚 葛荟婕说不喜欢森林北 中方回应俄乌战场现中国武器 荣耀镜头下的鲜活瞬间 他为什么依然单身 女孩被撞身亡一周后收到录取书 夸赞 狂野时代首映口碑 夸赞 卢凌风苏无名 闭幕式第九套广播体操 中方回应俄乌战场现中国武器 他为什么依然单身 中国点穴式制裁日本 闭幕式第九套广播体操 男子在泳池溺亡近分钟无人施救 总书记勉励体育健儿的高频词 中方回应俄乌战场现中国武器 复盘打 马龙太嗨了 毕赣给易烊千玺拍宝丽来 深圳小学生扮澳门蛋挞 岁妈妈让岁女儿不要太贪玩 马龙太嗨了 毕赣给易烊千玺拍宝丽来 总书记勉励体育健儿的高频词 毕赣给易烊千玺拍宝丽来 印度光辉战机表演时坠毁 狙击蝴蝶 易梦玲分钟视频广告报价万 毒唯只对真嫂子破防 闭幕式谁的铲子掉了 日本民众说本来没事都怪高市 彭小苒回应凤凰台上原著作者 湖南承办全运会 狂野时代首映口碑 李安对狂野时代的评价 买二手房一定要买别人住过的 张凌赫回复全运会获奖运动员 原神新温迪 易梦玲分钟视频广告报价万 复盘打 印度光辉战机表演时坠毁 冰箱贴已经进化成这样了吗 葛荟婕回应女儿叫章子怡妈妈 岁妈妈让岁女儿不要太贪玩 荣威全球首搭豆包大模型 这秒科技感直接拉满 他为什么依然单身 央妈还在帮我们保存童年 原神新温迪 卢凌风苏无名 马龙太嗨了 荣耀镜头下的鲜活瞬间 敌国条款称日本侵略五常可直接动武 湖南高院通报高中生奸杀教师案 葛荟婕回应女儿叫章子怡妈妈 印度光辉战机表演时坠毁 高市早苗招惹马来西亚 毕赣给易烊千玺拍宝丽来 周深天次以票告终 中国点穴式制裁日本 中国点穴式制裁日本 深圳小学生扮澳门蛋挞 湖南高院通报高中生奸杀教师案 李安对狂野时代的评价 湖南高院通报高中生奸杀教师案 易梦玲分钟视频广告报价万 荣威全球首搭豆包大模型
    更多>像素rpg游戏
    日本民众说本来没事都怪高市 复盘打 易梦玲没否认恋情 张凌赫回复全运会获奖运动员 央妈还在帮我们保存童年 荣威全球首搭豆包大模型 高市早苗招惹马来西亚 日元持续贬值日本发出最强烈警告 中方回应俄乌战场现中国武器 敌国条款称日本侵略五常可直接动武 凤凰台上原著作者女主 狙击蝴蝶 冰箱贴已经进化成这样了吗 冰箱贴已经进化成这样了吗 张凌赫回复全运会获奖运动员 高市早苗招惹马来西亚 女孩被撞身亡一周后收到录取书 冰箱贴已经进化成这样了吗 王鹤棣沈月合体跳 总书记勉励体育健儿的高频词 李安对狂野时代的评价 王鹤棣沈月合体跳 日元持续贬值日本发出最强烈警告 司机急刹车致岁男生高位截瘫 不是是爱 深圳小学生扮澳门蛋挞 奥迪郑钦文钦定版上市 高市早苗招惹马来西亚 马龙太嗨了 高市早苗招惹马来西亚 更大更强的航母或出现在日本 狙击蝴蝶 王橹杰高会 狙击蝴蝶 闭幕式谁的铲子掉了 中国点穴式制裁日本 中国点穴式制裁日本 狂野时代首映口碑 凤凰台上原著作者女主 总书记勉励体育健儿的高频词 央妈还在帮我们保存童年 买二手房一定要买别人住过的 岁妈妈让岁女儿不要太贪玩 夸赞 闭幕式谁的铲子掉了 他为什么依然单身 北大自杀女生包丽案细节披露 中国点穴式制裁日本 湖南高院通报高中生奸杀教师案 北大自杀女生包丽案细节披露 敌国条款称日本侵略五常可直接动武 易梦玲分钟视频广告报价万 夸赞 狂野时代首映口碑 易梦玲没否认恋情 女孩被撞身亡一周后收到录取书 日元持续贬值日本发出最强烈警告 毒唯只对真嫂子破防 李安对狂野时代的评价 易梦玲没否认恋情 深圳小学生扮澳门蛋挞 彭小苒回应凤凰台上原著作者 毒唯只对真嫂子破防 中国点穴式制裁日本 闭幕式第九套广播体操 买二手房一定要买别人住过的 周深天次以票告终 葛荟婕回应女儿叫章子怡妈妈 冰箱贴已经进化成这样了吗 王鹤棣沈月合体跳 彭小苒回应凤凰台上原著作者 他为什么依然单身 凤凰台上原著作者女主 毕赣给易烊千玺拍宝丽来 张凌赫回复全运会获奖运动员 王鹤棣沈月合体跳 这秒科技感直接拉满 李安对狂野时代的评价 复盘打 马龙太嗨了
    热门冒险解谜
    最新冒险解谜
    相关专辑
    这秒科技感直接拉满share 湖南承办全运会share 周深天次以票告终share 夸赞share 湖南高院通报高中生奸杀教师案share 他为什么依然单身share 高市早苗招惹马来西亚share 彭小苒回应凤凰台上原著作者share 王橹杰高会share 葛荟婕回应女儿叫章子怡妈妈share 司机急刹车致岁男生高位截瘫share 张凌赫回复全运会获奖运动员share 总书记勉励体育健儿的高频词share 买二手房一定要买别人住过的share 葛荟婕回应女儿叫章子怡妈妈share 复盘打share 女孩被撞身亡一周后收到录取书share 原神新温迪share 马龙太嗨了share 毕赣给易烊千玺拍宝丽来share 湖南承办全运会share 中方回应俄乌战场现中国武器share 岁妈妈让岁女儿不要太贪玩share 湖南高院通报高中生奸杀教师案share 王一博脚趾头都肿了share 王一博脚趾头都肿了share 原神新温迪share 高市早苗招惹马来西亚share 更大更强的航母或出现在日本share 中国点穴式制裁日本share 敌国条款称日本侵略五常可直接动武share 黄景瑜穿西装摸婚戒路透share 马龙太嗨了share 闭幕式谁的铲子掉了share 敌国条款称日本侵略五常可直接动武share 卢凌风苏无名share 毒唯只对真嫂子破防share 毒唯只对真嫂子破防share 毒唯只对真嫂子破防share 夸赞share 岁妈妈让岁女儿不要太贪玩share 更大更强的航母或出现在日本share 胡彦斌要名分share 北大自杀女生包丽案细节披露share 张凌赫回复全运会获奖运动员share 买二手房一定要买别人住过的share 男子在泳池溺亡近分钟无人施救share 黄景瑜穿西装摸婚戒路透share 深圳小学生扮澳门蛋挞share 卢凌风苏无名share 总书记勉励体育健儿的高频词share 黄景瑜穿西装摸婚戒路透share 印度光辉战机表演时坠毁share 湖南高院通报高中生奸杀教师案share 中方回应俄乌战场现中国武器share 闭幕式第九套广播体操share 岁妈妈让岁女儿不要太贪玩share 司机急刹车致岁男生高位截瘫share 央妈还在帮我们保存童年share 狂野时代首映口碑share 毕赣给易烊千玺拍宝丽来share 毕赣给易烊千玺拍宝丽来share 他为什么依然单身share 不是是爱share 易梦玲分钟视频广告报价万share 黄景瑜穿西装摸婚戒路透share 湖南高院通报高中生奸杀教师案share 他为什么依然单身share 这秒科技感直接拉满share 奥迪郑钦文钦定版上市share 毒唯只对真嫂子破防share 荣威全球首搭豆包大模型share 毕赣给易烊千玺拍宝丽来share 更大更强的航母或出现在日本share 王鹤棣沈月合体跳share 彭小苒回应凤凰台上原著作者share 深圳小学生扮澳门蛋挞share 葛荟婕说不喜欢森林北share 易梦玲分钟视频广告报价万share 李安对狂野时代的评价share 原神新温迪share 奥迪郑钦文钦定版上市share 湖南承办全运会share 湖南高院通报高中生奸杀教师案share 荣威全球首搭豆包大模型share 易梦玲没否认恋情share 彭小苒回应凤凰台上原著作者share 王鹤棣沈月合体跳share 司机急刹车致岁男生高位截瘫share 狂野时代首映口碑share 李安对狂野时代的评价share 张凌赫回复全运会获奖运动员share 深圳小学生扮澳门蛋挞share 张凌赫回复全运会获奖运动员share 原神新温迪share 日元持续贬值日本发出最强烈警告share 黄景瑜穿西装摸婚戒路透share 王橹杰高会share 闭幕式第九套广播体操share 闭幕式第九套广播体操share 李安对狂野时代的评价share 敌国条款称日本侵略五常可直接动武share 深圳小学生扮澳门蛋挞share 岁妈妈让岁女儿不要太贪玩share 闭幕式第九套广播体操share 奥迪郑钦文钦定版上市share 胡彦斌不是的share 北大自杀女生包丽案细节披露share 总书记勉励体育健儿的高频词share 印度光辉战机表演时坠毁share 胡彦斌不是的share 女孩被撞身亡一周后收到录取书share 深圳小学生扮澳门蛋挞share 毕赣给易烊千玺拍宝丽来share 总书记勉励体育健儿的高频词share 彭小苒回应凤凰台上原著作者share 日本民众说本来没事都怪高市share 高市早苗招惹马来西亚share 胡彦斌不是的share 王一博脚趾头都肿了share 奥迪郑钦文钦定版上市share 女孩被撞身亡一周后收到录取书share 狙击蝴蝶share 男子在泳池溺亡近分钟无人施救share 马龙太嗨了share 湖南承办全运会share 冰箱贴已经进化成这样了吗share 更大更强的航母或出现在日本share 总书记勉励体育健儿的高频词share 易梦玲没否认恋情share 胡彦斌不是的share 复盘打share 闭幕式第九套广播体操share 原神新温迪share 湖南承办全运会share 更大更强的航母或出现在日本share 闭幕式第九套广播体操share 王一博脚趾头都肿了share 毕赣给易烊千玺拍宝丽来share 更大更强的航母或出现在日本share
    用户反馈

    反馈原因

    其他原因

    联系方式